The pseudo-cosine sequences of a distance-regular graph
نویسندگان
چکیده
منابع مشابه
Subgraphs Graph in a Distance-regular Graph
Let Γ denote a D-bounded distance-regular graph, where D ≥ 3 is the diameter of Γ. For 0 ≤ s ≤ D − 3 and a weak-geodetically closed subgraph ∆ of Γ with diameter s, define a graph G(∆) whose vertex set is the collection of all weak-geodetically closed subgraphs of diameter s+2 containing ∆, and vertex Ω is adjacent to vertex Ω′ in G if and only if Ω∩Ω′ as a subgraph of Γ has diameter s+1. We sh...
متن کاملA Questionable Distance-Regular Graph
In this paper, we introduce distance-regular graphs and develop the intersection algebra for these graphs which is based upon its intersection numbers. We discuss results following from the definition of the intersection algebra. We investigate two examples of distance-regular graphs and show how these results apply. Finally, we introduce parameters that determine intersection numbers. We inves...
متن کاملLocally Pseudo-Distance-Regular Graphs
The concept of local pseudo-distance-regularity, introduced in this paper, can be thought of as a natural generalization of distance-regularity for non-regular graphs. Intuitively speaking, such a concept is related to the regularity of graph 1 when it is seen from a given vertex. The price to be paid for speaking about a kind of distance-regularity in the non-regular case seems to be locality....
متن کاملDistance regular covers of the complete graph
Distance regular graphs fall into three families: primitive, antipodal, and bipar-tite. Each antipodal distance regular graph is a covering graph of a smaller (usually primitive) distance regular graph; the antipodal distance graphs of diameter three are covers of the complete graph, and are the first non-trivial case. Many of the known examples are connected with geometric objects, such as pro...
متن کاملPseudo 1-homogeneous distance-regular graphs
Let be a distance-regular graph of diameter d ≥ 2 and a1 = 0. Let θ be a real number. A pseudo cosine sequence for θ is a sequence of real numbers σ0, . . . , σd such that σ0 = 1 and ciσi−1 + aiσi + biσi+1 = θσi for all i ∈ {0, . . . , d−1}. Furthermore, a pseudo primitive idempotent for θ is Eθ = s ∑di=0 σiAi , where s is any nonzero scalar. Let v̂ be the characteristic vector of a vertex v ∈ V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2006.05.017